วันอาทิตย์ที่ 29 ตุลาคม พ.ศ. 2560

3.2 การสื่อสารข้อมูล


การสื่อสารข้อมูล


        เป็นการเชื่อมโยงคอมพิวเตอร์ต้นทางเข้ากับคอมพิวเตอร์ปลายทาง โดยใช้ตัวกลางหรือสื่อกลางสำหรับเชื่อมต่อ ซึ่งสามารถทำได้หลายรูปแบบ การต่อแบบสายตรงตามรูปนั้น อาจจะต่อตรงโดยใช้ช่องต่อแบบขนานของเครื่อง ทั้ง 2 เครื่อง เพื่อใช้สำหรับโอนย้ายข้อมูลระหว่างเครื่องได้ หรืออาจจะต่อโดยใช้อินเทอร์เฟสการ์ดใส่ไว้ใน เครื่องสำหรับเป็นจุดต่อก็ได้ ขึ้นอยู่กับลักษณะของการใช้งานเป็นการเชื่อมต่อ ระยะไกลจากคอมพิวเตอร์ต้นทางไปยังปลายทาง โดยผ่านเครือข่ายโทรศัพท์สาธารณะ
สื่อกลางในการสื่อสารข้อมูล
1.1 สื่อกลางแบบใช้สาย
1) สายคู่บิดเกลียว (twisted pair cable) สายนำสัญญาณแบบนี้แต่ละคู่สายที่เป็นสายทองแดงจะถูกพันบิดเป็นเกลียว เพื่อลดการรบกวนของคลื่นแม่เหล็กไฟฟ้าจากคู่สายข้างเคียงภายในสายเดียวกันหรือจากภายนอก ทำให้สามารถส่งข้อมูลด้วยความเร็วสูง สายคู่บิดเกลียวสามารถใช้ส่งข้อมูลจำนวนมากเป็นระยะทางไกลได้หลายกิโลเมตร เนื่องจากราคาไม่แพงมาก ใช้ส่งข้อมูลได้ดี น้ำหนักเบา ง่ายต่อการติดตั้ง จึงนิยมใช้งานอย่างกว้างขวาง
สายคู่บิดเกลียวมี 2 ชนิด คือ
– สายคู่บิดเกลียวแบบไม่ป้องกันสัญญาณรบกวน หรือสายยูทีพี (Unshielded Twisted Pair :UTP) เป็นสายใช้ในระบบโทรศัพท์ ต่อมาได้มีการรับปรุงคุณสมบัติให้ดีขึ้น จนสามารถใช้กลบสัญญาณความถี่สูงได้ ทำให้ส่งข้อมูลได้ด้วยความเร็วสูงขึ้น
– สายคู่บิดเกลียวแบบป้องกันสัญญาณรบกวน หรือสายเอสทีพี (Shielded Twisted Pair: STP) เป็นสายที่หุ้มด้วยตัวกั้นสัญญาณเพื่อป้องกันการรบกวนได้ดียิ่งขึ้น สายเอสทีพีรองรับความถี่ของการส่งข้อมูลสูงกว่าสายยูทีพี แต่มีราคาแพงกว่า



2) สายโคแอกซ์ (coaxial cable) เป็นสายนำสัญญาณที่เรารู้จักกันดี โดยใช้เป็นสายนำสัญญาณที่ต่อจากเสาอากาศเครื่องรับโทรทัศน์หรืสายเคเบิลทีวี ตัวสายประกอบด้วยลวดทองแดงที่เป็นแกนหลักหนึ่งเส้นหุ้มด้วยฉนวนเพื่อป้องกันกระแสไฟฟ้ารั่ว จากนั้นจะหุ้มด้วยตัวนำซึ่งทำจากลวดทองแดงถักเป็นร่างแหเพื่อป้องกันการรบกวนของคลื่นแม่เหล็กไฟฟ้าและสัญญาณรบกวนอื่นๆ ก่อนจะหุ้มชั้นนอกสุดด้วยฉนวนพลาสติก และนิยมใช้เป็นสายนำสัญญาณแอนะล็อกเพื่อเชื่อมต่ออุปกรณ์ภาพและเสียง (audio-video devices) ต่างๆ ภายในบ้านและสำนักงาน ตัวอย่างสายโคแอกซ์


3) สายไฟเบอร์ออพติก (fiber-optic cable) ประกอบด้วยกลุ่มของเส้นใยทำจากแก้วหรือพลาสติกที่มีขนาดเล็กประมาณเส้นผม แต่ละเส้นจะมีแกนกลาง (core) ที่ถูกห่อหุ้มด้วยวัสดุใยแก้วอีกชนิดหนึ่งซึ่งเรียกว่า แคล็ดดิง(cladding) และหุ้มอีกชั้นด้วยฉนวนเพื่อป้องกันการกระแทกและฉีกขาด ตัวอย่างสายไฟเบอร์ออพติก




1.2 สื่อกลางแบบไร้สาย
1) อินฟราเรด สื่อกลางประเภทนี้มักใช้กับการสื่อสารข้อมูลที่ไม่มีสิ่งกีดขวางระหว่างตัวส่งและตัวรับสัญญาณ เช่น การส่งสัญญาณจากรีโมตคอนโทรลไปยังเครื่องรับโทรศัพท์หรือวิทยุการเชื่อมต่อคอมพิวเตอร์กับคอมพิวเตอร์โดยผ่านพอร์ตไออาร์ดีเอ (The Infrared Data Association : IrDA ) :ซึ่งเป็นการเชื่อมต่อเครือข่ายระยะใกล้

2) ไมโครเวฟ  เป็นสื่อกลางในการสื่อสารที่มีความเร็วสูง ใช้สำหรับการเชื่อมต่อระยะไกลโดยการส่งสัญญาณคลื่นแม่เหล็กไฟฟ้าไปในอากาศพร้อมกับข้อมูลที่ต้องการส่ง และต้องมีสถานีที่ทำหน้าที่ส่งและรับข้อมูล และเนื่องจากสัญญาณไมโครเวฟจะเดินทางเป็นเส้นตรงไม่สามารถเลี้ยวตามความโค้งของผิวโลกได้ จึงต้องมีการตั้งสถานีรับส่งข้อมูลเป็นระยะ


3) คลื่นวิทยุ  เป็นสื่อกลางที่ใช้ส่งสัญญาณไปในอากาศ โดยสามารถส่งในระยะทางได้ทั้งใกล้และไกล โดยมีตัวกระจายสัญญาณ (broadcast) ส่งไปยังตัวรับสัญญาณ และใช้คลื่นวิทยุในช่วงความถี่ต่างๆ กันในการส่งข้อมูล


4) ดาวเทียมสื่อสาร พัฒนาขึ้นมาเพื่อหลีกเลี่ยงข้อจำกัดของสถานีรับส่งไมโครเวฟบนผิวโลกโดยเป็นสถานีรับส่งสัญญาณไมโครเวฟบนอวกาศ ในการส่งสัญญาณต้องมีสถานีภาคพื้นดินคอยทำหน้าที่รับและส่งสัญญาณขึ้นไปบนดาวเทียมที่โคจรอยู่สูงจากพื้นโลก โดยดาวเทียมเหล่านั้นจะเคลื่อนที่ด้วยคามเร็วที่เท่ากับการหมุนของโลก จึงเสมือนกับดาวเทียมนั้นอยู่นิ่งกับที่ขณะที่โลกหมุนรอบตัวเอง ทำให้การส่งสัญญาณไมโครเวฟจากสถานีหนึ่งขึ้นไปบนดาวเทียม และการกระจายสัญญาณจากดาวเทียมลงมายังสถานีตามจุดต่างๆ บนผิวโลก เป็นไปอย่างแม่นยำ นอกจากนี้ยังมีการใช้งานดาวเทียมในการระบุตำแหน่งบนพื้นโลกเรียกว่าระบบจีพีเอส โดยบอกพิกัดเส้นรุ้งและเส้นแวงของผู้ใช้งานเพื่อใช้ในการนำทาง


วิธีการถ่ายโอนข้อมูล
วิธีการถ่ายโอนข้อมูลเป็นวิธีส่งสัญญาณออกจากอุปกรณ์ส่งข้อมูลและการรับสัญญาณด้วยอุปกรณ์รับข้อมูล มีการถ่ายโอนอยู่ 2วิธี ดังนี้
  1. การถ่ายโอนข้อมูลแบบขนาน เป็นการส่งข้อมูลออกที่ละ 1 ไบต์ หรือ 8บิต จากอุปกรณ์ส่งข้อมูลไปยังอุปกรณ์รับข้อมูล ดังนี้ สื่อกลางหรือสายสัญญาณระหว่างอุปกรณ์ส่งข้อมูลและอุปกรณ์รับข้อมูล จึงต้องมีช่องทางอย่างน้อง 8ช่องทางขนาน กันเพื่อให้สัญญาณไฟฟ้าผ่านไปได้ และระยะทางของสายสัญญาณแบบขนานไม่ควรยาวเกิน 100 ฟุตเพราะอาจจะทำให้เกิดปัญหาเนื่องจากความต้านทานของสาย เนื่องจากนี้อาจมีปัญหาที่เกิดจากกระไฟฟ้าสายดินส่งคลื่นไปก่อกวนการทำงานของอุปกรณ์ต่างๆทำให้ผู้รับสัญญาณที่ผิดพลาดได้

2. การถ่ายโอนข้อมูลแบบอนุกรม เป็นการส่งข้อมูลออกไปทีละ 1บิต ระหว่างอุปกรณ์ส่งและอุปกรณ์รับข้อมูลดังนั้น มีช่องทางการเดินของข้อมูลมีเพียง 1ช่องทาง สำหรับการส่งแบบไกลๆจะมีการส่งช้ากว่าแบบขนาน การถ่ายโอนข้อมูลแบบอนุกรมจะเริ่มด้วยข้อมูลจากอุปกรณ์ส่งข้อมูลจะถูกเปลี่ยนให้เป็นสัญญาณอนุกรมเสียก่อนแล้วค่อยทยอยส่งออกทีละบิตไปยังอุปกรณ์รับข้อมูลและอุปกรณ์รับข้อมูลจะมีกลไกในการเปลี่ยนข้อมูลที่ส่งมาทีละบิตให้เป็นสัญญาณแบบขนาน

การถ่ายโอนข้อมูลแบบอนุกรม สามารถแบ่งตามทิศทางการสื่อสารข้อมูลได้ 3แบบ ดั้งนี้
1.1 การสื่อสารทางเดียว (simplex) การติดต่อสื่อสารทางเดียวมีลักษณะการส่งข้อมูลจากผู้ส่งข้อมูลจากผุ้ส่งไปยังผู้รับในทิศทางเดียว เช่น สถานีวิทยุกระจายเสียง การแพร่ภาพทางโทรทัศน์ บอร์ด ประกาศ ภาพ เป็นต้น


1.2 แบบสื่อสารสองทางครึ่งอัตรา (half duplex) เป็นการติดต่อสื่อสารแบบกึ่งคู่มีลักษณะในการส่งข้อมูลได้สองทิศทางแบบสลับ แต่ละสถานีสามารถทำหน้าที่ได้ทั้งรับและส่งข้อมูลแต่จะผลัดกันส่งผละผลัดกันรับ จะส่งหรือรับข้อมูลในเวลาเดียวกันไม่ได้ เช่น วิทยุสื่อสารของตำรวจวิทยุสื่อสารของระบบขนส่ง การรับส่งโทรสาร (Fax) เป็นต้น


1.3 สื่อสารสองทางเต็มอัตรา (full duplex) การติดต่อแบบทางคู่มีการส่งข้อมูลได้สองทางในเวลาเดียวกัน สามารถรับส่งข้อมูลได้พร้อมกันในเวลาเดียวกัน ทำให้การทำงานรวดเร็วขึ้น ไม่ต้องเสียเวลารอ เช่นการสนทนาทางโทรศัพท์ การสนทนาทางอินเตอร์เน็ต


รูปแบบการเชื่อมต่อระบบเครือข่ายคอมพิวเตอร์
  1. โทโปโลยีแบบบัส เป็นโทโปโลยีที่ได้รับความนิยมใช้กันมากที่สุดมาตั้งแต่อดีตจนถึงปัจจุบัน ลักษณะการทำงานของเครือข่าย โทโปโลยีแบบบัส คืออุปกรณ์ทุกชิ้นหรือโหนดทุกโหนด ในเครือข่ายจะต้องเชื่อมโยงเข้ากับสายสื่อสารหลักที่เรียกว่า”บัส” (BUS) เมื่อโหนดหนึ่งต้องการจะส่งข้อมูลไปให้ยังอีกโหนด หนึ่งภายในเครือข่าย จะต้องตรวจสอบให้แน่ใจก่อนว่าบัสว่างหรือไม่ ถ้าหากไม่ว่างก็ไม่สามารถจะส่งข้อมูลออกไปได้ ทั้งนี้เพราะสายสื่อสารหลักมีเพียงสายเดียว ในกรณีที่มีข้อมูลวิ่งมาในบัส ข้อมูลนี้จะวิ่งผ่านโหนดต่างๆ ไปเรื่อยๆ ในขณะที่แต่ละโหนดจะคอยตรวจสอบข้อมูลที่ผ่านมาว่าเป็นของตนเองหรือไม่ หากไม่ใช่ ก็จะปล่อยให้ข้อมูลวิ่งผ่านไป แต่หากเลขที่อยู่ปลายทาง ซึ่งกำกับมากับข้อมูลตรงกับเลขที่อยู่ของของตน โหนดนั้นก็จะรับข้อมูลเข้าไป

2. โทโปโลยีแบบดาว โทโปโลยีแบบดาว (Star Topology) เป็นรูปแบบที่เครื่องคอมพิวเตอร์ทุกเครื่องที่เชื่อมต่อเข้าด้วยกันในเครือ ข่าย จะต้องเชื่อมต่อกับอุปกรณ์ตัวกลางตัวหนึ่งที่เรียกว่า ฮับ (HUB) หรือสวิตช์ (Switch) หรือเครื่อง ๆ หนึ่ง ซึ่งทำหน้าที่เป็นศูนย์กลางของการเชื่อมต่อสายสัญญาณที่มาจากเครื่องต่าง ๆ ในเครือข่าย และควบคุมเส้นทางการสื่อสาร ทั้งหมด เมื่อมีเครื่องที่ต้องการส่งข้อมูลไปยังเครื่องอื่น ๆ ที่ต้องการในเครือข่าย เครื่องนั้นก็จะต้องส่งข้อมูลมายัง HUB หรือเครื่องศูนย์กลางก่อน แล้ว HUB ก็จะทำหน้าที่กระจายข้อมูลนั้นไปในเครือข่ายต่อไป


3. โทโปโลยีแบบวงแหวน (RING) เป็นรูปแบบที่ เครื่องคอมพิวเตอร์ทุกเครื่องในระบบเครือข่าย ทั้งเครื่องที่เป็นผู้ให้บริการ( Server) และ เครื่องที่เป็นผู้ขอใช้บริการ(Client) ทุกเครื่องถูกเชื่อมต่อกันเป็นวงกลม ข้อมูลข่าวสารที่ส่งระหว่างกัน จะไหลวนอยู่ในเครือข่ายไปใน ทิศทางเดียวกัน โดยไม่มีจุดปลายหรือเทอร์มิเนเตอร์เช่นเดียวกับเครือข่ายแบบ BUS ในแต่ละโหนดหรือแต่ละเครื่อง จะมีรีพีตเตอร์ (Repeater) ประจำแต่ละเครื่อง 1 ตัว ซึ่งจะทำหน้าที่เพิ่มเติมข้อมูลที่จำเป็นต่อการติดต่อสื่อสารเข้าในส่วนหัวของแพ็กเกจที่ส่ง และตรวจสอบข้อมูลจากส่วนหัวของ Packet ที่ส่งมาถึง ว่าเป็นข้อมูลของตนหรือไม่ แต่ถ้าไม่ใช่ก็จะปล่อยข้อมูลนั้นไปยัง Repeater ของเครื่องถัดไป


4. โทโพโลยีแบบต้นไม้ (Tree Topology) มีลักษณะเชื่อมโยงคล้ายกับโครงสร้างแบบดาวแต่จะมีโครงสร้างแบบต้นไม้ โดยมีสายนำสัญญาณแยกออกไปเป็นแบบกิ่งไม่เป็นวงรอบ โครงสร้างแบบนี้จะเหมาะกับการประมวลผลแบบกลุ่มจะประกอบด้วยเครื่องคอมพิวเตอร์ระดับต่างๆกันอยู่หลายเครื่องแล้วต่อกันเป็นชั้น ๆ ดูราวกับแผนภาพองค์กร แต่ละกลุ่มจะมีโหนดแม่ละโหนดลูกในกลุ่มนั้นที่มีการสัมพันธ์กัน การสื่อสารข้อมูลจะผ่านตัวกลางไปยังสถานีอื่นๆได้ทั้งหมด



5. โทโพโลยีแบบผสม (Hybrid Topology) เป็นเครือข่ายที่ผสมผสานโทโพโลยีแบบต่างๆ เข้าด้วยกัน เป็นเครือข่ายขนาดใหญ่เพียงเครือข่ายเดียว เช่น การเชื่อมเครือข่ายแบบวงแหวน แบบดาว และแบบบัสเข้าเป็นเครือข่ายเดียวกัน






ไม่มีความคิดเห็น:

แสดงความคิดเห็น